Hilbert scales and Sobolev spaces defined by associated Legendre functions

نویسندگان

  • Víctor Domínguez
  • Norbert Heuer
  • Francisco-Javier Sayas
چکیده

In this paper we study the Hilbert scales defined by the associated Legendre functions for arbitrary integer values of the parameter. This problem is equivalent to study the left–definite spectral theory associated to the modified Legendre equation. We give several characterizations of the spaces as weighted Sobolev spaces and prove identities among the spaces corresponding to lower regularity index.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproducing Kernels of Generalized Sobolev Spaces via a Green Function Approach with Differential Operators

In this paper we introduce a generalization of the classical L2(R)-based Sobolev spaces with the help of a vector differential operator P which consists of finitely or countably many differential operators Pn which themselves are linear combinations of distributional derivatives. We find that certain proper full-space Green functions G with respect to L = P∗TP are positive definite functions. H...

متن کامل

Interpolation of Hilbert and Sobolev Spaces: Quantitative Estimates and Counterexamples

This paper provides an overview of interpolation of Banach and Hilbert spaces, with a focus on establishing when equivalence of norms is in fact equality of norms in the key results of the theory. (In brief, our conclusion for the Hilbert space case is that, with the right normalizations, all the key results hold with equality of norms.) In the final section we apply the Hilbert space results t...

متن کامل

G-frames in Hilbert Modules Over Pro-C*-‎algebras

G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...

متن کامل

Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree

We consider error estimates for the interpolation by a special class of compactly supported radial basis functions. These functions consist of a univariate polynomial within their support and are of minimal degree depending on space dimension and smoothness. Their associated \native" Hilbert spaces are shown to be norm-equivalent to Sobolev spaces. Thus we can derive approximation orders for fu...

متن کامل

Singularly Perturbed Self-Adjoint Operators in Scales of Hilbert spaces

Finite rank perturbations of a semi-bounded self-adjoint operator A are studied in the scale of Hilbert spaces associated with A. A concept of quasi-boundary value space is used to describe self-adjoint operator realizations of regular and singular perturbations of A by the same formula. As an application the one-dimensional Schrödinger operator with generalized zero-range potential is consider...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 235  شماره 

صفحات  -

تاریخ انتشار 2011